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ASYMPTOTIC ANALYSIS OF PROBLEMS ON THE FREE VIBRATION OF RECTANGULAR 

TRANSVERSELY ISOTROPIC AND THREE-LAYER PLATES 

V. M. Kornev and A. O. Mul'kibaev UDC 539.3 

This article examines problems concerning the free vibration of transverse isotropic 
and three-layer rectangular plates (refined theory of bending accounting for shear through 
the thickness). The problems are described by a system of two equations, the first being of 
the order 2m (m = 2, 3 for transversely isotropic and three-layer plates, respectively) and 
the second a singularly perturbed second-order equation containing the small parameter e. 
For transversely isotropic plates, e characterizes the effect of transverse shears, while it 
characterizes the shear stiffness of the three-layer sandwich in the case of three-layer plates. 
We construct asymptotic expansions of the solutions with allowance for angular boundary- 
layer solutions, when the parameter ~ is small. In this case, the second equation is a per- 
turbation equation whose solution is in the nature of a boundary layer (edge effect). 

Different types of boundary conditions are examined for the initial systems. We study 
the relationship between the boundary conditions of the initial and truncated problems (with 
the perturbation equation omitted). Substantiation is provided for the transition from the 
boundary conditions in the refined formulation to the classical formulation in the neigh- 
borhood of points of inflection (i.e., for a piecewise-smooth contour). Use of the Kirch- 
hoff transform is validated for a free edge near a corner. Although a separation of variables 
is often possible for truncated problems, the complete system of equations does not permit 
such seParation. 

In the classical theory of the bending of plates, there is a contradiction between the 
overall order of the system of equations (two biharmonic equations for the normal deflection 
and the stream function) and five natural static boundary conditions. Thus, on the free 
edge, the bending and turning moments, the shearing force, and two forces in the plane of 
the plate are equal to zero. In the classical theory, four rather than five boundary condi- 
tions are established for the free edge if the Kirchhoff transform is used. There are theo- 
ries which are refinements of the classical theory and make use of more general hypotheses in 
deriving the equations (allowance for shear through the plate thickness). The contradiction 
between the overall order of the system and the natural static boundary ocnditions disappears 
in these theories. The form of the system which is simplest for analytical purposes is prob- 
ably that presented in [i, 2]. The order of this system is higher than in the classical 
theory due to the presence of a second-order equation having a solution of the edge-effect 
(boundary-layer) type. 

Researchers have developed a method of changing over from the boundary conditions of 
the refined theory to the boundary conditions of the classical theory [3-5] (an example 
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being the use of the Kirchhoff transform for a free edge) in the case of smooth contours. 
In the case of rectangular plates (the case of a piecewise-smooth contour), it is necessary 
to substantiate these transformations near corner points. We propose an approach in which, 
with allowance for boundary-layer solutions [6, 7], asymptotic analysis is employed to formu- 
late the boundary conditions of truncated problems by the elimination method [8, 9]. 

i. We will examine a system of two linear equations with constant coefficients in a 
4 

plane rectangular region D = {(x, y): 0 < x < i, 0 < y < b/a} with the boundary ~= U Fl (Ft 
/=I 

are sides of the rectangle, numbered in the counterclockwise direction beginning with the 

side x = 0): 

Low(x , g) = ~2Mow(X , y), e2Av(x, y) = v(x, y). ( 1 . 1 )  

Here, L 0 and M 0 are uniformly elliptic operators of order 2m, 2k (m > k), respectively; A 
is the Laplace operator; m is the natural frequency of the vibrations. 

The boundary conditions for system (I.i) have the form 

Nk 

B~w-~ ~ a k ~ ( e ) D ~ v l r = O  ( k = 1 , 2 , 3  . . . . .  re, m + 1 ) ,  ( 1 . 2 )  
I~i-o 

where ~ = (~1, a2); ]el = al ~ ~2; D~ = ~l~I/~nal~Sa2; the order of the operators B k is equal to m k 

(m,h ~ 2m). 

With specific operators L 0, M 0, and B k and coefficients ak~, Eqs. (1.1)-(1.2) describe 
problems on the free vibration of transversely isotropic and three-layer plates. 

We will assume that boundary conditions (1.2) are described in canonical form if they 
satisfy the following requirements. 

A. Let ak~(E) ~ O(s pk~) (Pk~ are integers). Then quantity qk~, determined from the 
relation qk~ = ai - Pk~, will be referred to as the s-th order of the effect on F of the 
operator ak~(s)D~ with fixed ~. We shall call the number qh =maxq~ the s-th order of the 

effect of the k-th boundary condition (1.2) on F. We assume that the boundary conditions are 
written so that qh~q~+i (k = i, 2 ..... m). 

We will use T~ to represent a differential operator whose terms in the k-th boundary 
condition have an ~-th-order effect equal to qk and we will call it the principal part of the 
boundary conditions in v. We will use T k to represent the remaining terms. Then conditions 
(1.2) have the form 

~kw + T~v + Tkv Iv = O. 

B. If in the last s conditions (1.2) qm-s+l =''' = qm = qm+i, then the last condition 
in (1.2) k = m + 1 contains the maximum derivative with respect to the normal to the boundary 
in the principal part. 

It is fairly often the case in practical problems that e is small. It is known that 
the solution of the perturbation equation is in the nature of a boundary layer and is non- 
trivial only in the neighborhood of the boundary F; this solution rapidly approaches zero 
with increasing distance from the boundary. 

Let us proceed to the formulation of the degenerate problem at s § 0. It is obviously 
connected with the solution of the first equation of system (i.i) - for which we must for- 
mulate m boundary conditions on r. 

The algebraic approach [i0, ii] is based on the fact that the last condition in (1.2) 
is dropped and the function v is omitted from the remaining conditions. We thus obtain the 
boundary conditions of the degenerate problem 

Lowo(x ' g) = ~2Mowo(X , y), B~wo[ r = 0 (k = l ,  2, 3 .... , m). ( 1 . 3 )  

As is known, in the general case (such as a free edge), the boundary conditions of de- 
generate problem (1.3) do not coincide with the boundary conditions of simplified plate theo- 
ries. The difficulties encountered in formulating the boundary conditions of degenerate 
problems in such cases are related to the fact that complete information is needed on the 
structure of the solution of the perturbation equation. 

Use of the elimination method [8, 9] developed for plates and shells with a smooth con- 
tour [4, 5] and in the neighborhood of points of inflection [7] makes it possible to overcome 
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these obstacles. This method is based on the fact that information on the solution of the 
perturbation equation is accounted for in the first m boundary conditions (1.2). 

We will assume (condition A) that inhomogeneous equations (I,I) with inhomogeneous bound- 
ary conditions (1.2) have a unique solution if the solvability condition is satisfied. 

We will construct the solution of problem (1.1)-(1.2) in the following form (e ~ i) [6] 

u,~ (x, y) = ~ ~w~ (x, y) + e~+~Z~ (z, y), 

, ~  (1.4) 

~u (x, ~) = ~ l~o ~' !Q" (~' y) + Q~ (~' ~) + Q~ (~' y) + q4, (~, n~) + 

(~, }, + ~v (n~ (h, m) + B~ (~, m) + R.~ n2) + R4~ (~, n~))l + ~n+~z~ (x, y) 

where ~1 = x/e; ~2 = ( 1 -  x)/e; ~1 = y/e; ~]e = ( a -  y)/e; Z.(x ,  y ) a n d  Zn(X , y) a re  the  remainders  of  
the expansion. It should be noted that the boundary layer in (i.4) (the second relation) 
is constructed with allowance for the factors ~ (see [i0, ii]) and eY. The meaning of these 
factors will become clear from the ensuing discussion. 

The role of the functions in (1.4) will become evident from a description of the pro- 
cess of their determination. Expansion (1.4) formally satisfies Eq. (i.i) and boundary con- 
ditions (1.2). The functions w i describe the main part of the solution of problem (I.i)- 
(i,2). Inserting (1.4) (the first relation) into the first equation of system (I.i) and 
equating first-order terms in e to zero, we obtain 

X Lowi(x, Y) = ~-Mowi( , Y), LoZ,(x,  Y) = ~MoZ~(x ,  Y) (1.5) 
( i = t ,  2, 3 . . . .  , n). 

It is evident that the functions w i and their derivatives are invariant with respect to z, 
since the first equation of (i.i) is independent of e, i.e., its terms are of the same order. 

The boundary-layer part of the asymptote consists of two types of boundary functions: Q 
and R. In the neighborhood of each side FZ of the rectangular plate we construct ordinary 
boundary layers Qs which are described by ordinary differential equations and are boundary- 
layer functions in one variable. For example, in the neighborhood of F z, Qs Y) is a 
boundary-layer function in the variable ~i, etc, 

Qu(~l, y ) - + O  at ~1-+ oo. (1.6) 

The boundary functions QEi change as follows in relation to e: 

of~l 
o n % a e % Q z i ' e  Qu, Q l i ~ O ( l ) ,  l a l = a , w  %. 

In accordance wi th  [6] ,  boundary f u n c t i o n s  R~i in two v a r i a b l e s  de termined from e l l i p t i c  
equa t ions  a re  i n t r o d u c e d  in t he  neighborhood of p o i n t s  of i n f l e c t i o n .  Thus, in  the  ne igh-  
borhood of a vertex (0, 0), Rti (g~, ~z) is a boundary-layer function in the variables gl and ql: 

nli(~l, nl)--~O at ~+n~-+~176  (1.7)  

The angu l a r  boundary l a y e r  R~i(~,  N) changes as fo l l ows  in r e l a t i o n  to  E: 

Ota.______~l Ru  ~ e_l~lRu, Ru ~ 0 (1). 
On~Os % 

I n s e r t i n g  (1 .4 )  ( t he  second r e l a t i o n )  i n t o  the  second equa t ion  of  system (1 .1)  and 
equating to zero the terms of the first order with respect to s for the functions QEi, Rs 
and z n, we obtain the following iterative chain of equations for Q1i: 

g~(~ ,  Y) = -O~Q~- /Oy  ~, g~o = gn  = 0 (i = O, 1, 2 . . . . .  n). 

Here, the variable y is a parameter. 

For RZi($~ , D~) 

q-dq~- - I  Rl~(~,nx)=0 ( ~ > 0 ,  N~>0). (1 .9)  
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The boundary functions Q~i, R~i (~ = 2, 3, 4) are determined from similar equations 
in the neighborhood of the other sides and corner points. For the remainder Zn(X, y) 

(%~A - 1) z~ (x, y) = h (x, y), h (x, y) ~] j~ k o = ~ a-Q.~_~+h/@. (i.1o) 
l~1 h=O 

The specific form of the boundary layers is obtained with allowance for the boundary 
conditions. As an example, we will examine the side F I . Inserting expansion (1.4) into 
boundary conditions (1.2) and ignoring the mutual effect of the boundary layers (i.e., taking 
only the functions Qli, Qii, Q4i, Rli, R4i into account in the boundary conditions on Fl), 
we find 

~/i  %'/'CO{ -i L %n+lZn _~_ el3 i ( 8 - % a ~  (e) D,QIi~ @ 

+~ ak~(r) (@'>~-f-Q~d+e a~(~)D~(RI~+R~d)+% z~]lr=O. (1.11) 

O~ la[ 0 (ZlO" O;2" OC O[ff, J /OxC~IOTIO~2; D(Z ,qlal/,Qy:O~l,~^ff'2 
H e r e ,  Da = O  / ~1 u ,  D2 : 3 = ~  / ~ t  ~q  �9 

It is necessary to keep in mind that in boundary conditions (i.ii) the boundary layers 
are written in a transformed coordinate system. It should be noted that only the last condi- 
tion in (i.ii) k = m + 1 contains the lowest degree of the small parameter s as a factor. 
By virtue of conditions A and B, in the zeroth step of the iteration the functions Q1i, R1i, 
and R4i should compensate for the error in the last boundary condition of (i.ii) k = m + 1 

- "V-• Pi I It, 0, 

2 
w h e r e  • = m a x  ( ] a l  - -  P,),+a,~); •  = m a x  (ax - -  p ~ + , , ~ ) .  T h e  o p e r a t o r s  Tk+~(T,),+,) 

derivatives in which the coefficients are of the order e • • 

In accordance with [6], the function Q10 eliminates the error for w0, while R10(R40) 
eliminates the error introduced by the function Qi0(Q40) in boundary condition (1.12) in the 
neighborhood of the point of inflection (0, 0) [the point (0, a)]. Thus, condition (1.12) 
takes the Simpler form 

~-~'~ +~ ( r~ +~Q,o) [r~ = - sa~,+,~,o t~. ( 1 . 1 3  ) 

The main part of the solution w 0 has already been constructed. Similar conditions can be 
found for the functions Qs on Ft. 

For the functions R<0 on F l we obtain 

P--ZITI D I --~2 2 e ~ + 1 ' ~ o  lr~ = -- e 7m+,Q~o Iq.  ( 1 , 1 4 )  

We have conditions similar to (I.14) for R10 on F 2. The boundary conditions for the other 
angular boundary layers R~0 near the other vertices of the rectangle are constructed in a 
similar manner. 

To properly construct the iteration process, quantities of the same order of smallness 
should remain in the left and right sides of (1.13) and (i.14). We thus write the parameters 

and y in expansion (1.4) in the form 

[3 = q~+~,  ? = •  - -  • 

We then assemble terms with the same degrees of the small parameter in Eqs. (i.ii) (k = 
i, 2, 3,o..,m). First we collect the terms with s to the zeroth degree; 

Bh'm0 [r~ = qb~ (Q~0, Q~0, Q~0, R~0 . . . .  ) l b .  ( 1 . 1 5 )  

The right side of conditions (1.15) is a differential operator of the boundary-layer 
functions determined in the neighborhood of F~ and the adjacent sides. By virtue of condi- 
tions (1.13) on F~ and similar conditions on F~, the functions Q~0 are found through w 0. It 
follows from (1.14) and the analogous conditions in the neighborhoods of the other points 
of inflection that R~0 is also determined through w 0. Taking the formulas expressing Q~0 and 
Rs in terms of w 0 and inserting them into the right sides of (1.15), we arrive at boundary 
conditions for w 0 

B~Wo - -  q~, (Wo) Irz = 0 (k = 1, 2 . . . . .  m) .  ( 1 . 1 6  ) 

(1,12) 

contain only those 
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Thus, we have problem (1.5), (1.16) to determine w 0. We will refer to this as the 
truncated problem. Knowing its solution, we can easily reconstruct the boundary layer. 
Thus, the zeroth approximation of w0, Q~0, and R~0 in the initial problem has been found. 

Placing the terms with s to the first degree in (i. Ii), we obtain boundary conditions to 
determine the boundary layers Q~l and R~l. These conditions are similar to (1.13) and (1.14), 
except that the right side is dependent on w0, wz, Q~0, and Rs The problems for the subse- 
quent approximations are formulated in a similar manner. 

The remainders satisfy the boundary conditions 

BhZn + e ~ ~-a ak~ (8) Daz.  [r = ~ A~ (Qm Ru) 
i~i=o ~=o ( 1 . 1 7 )  

(k = 1 , 2 , 3 , . . ,  m, m § t) 

(A i a r e  c e r t a i n  d i f f e r e n t i a l  o p e r a t o r s ) .  In  a c c o r d a n c e  w i t h  c o n d i t i o n  A, p rob lem ( 1 . 5 ) ,  
( 1 . 1 0 ) ,  ( 1 . 1 7 )  has  a u n i q u e  s o l u t i o n .  

L e t  us  p r o c e e d  t o  t h e  s t u d y  o f  s p e c i f i c  p r o b l e m s .  

2. We w i l l  examine  a s y s t e m  o f  e q u a t i o n s  d e s c r i b i n g  t h e  f r e e  v i b r a t i o n  o f  a t r a n s v e r s e l y  
i s o t r o p i c  r e c t a n g u l a r  p l a t e :  

AAw(x, y) -- ~2k2(t -- ~A) w(x, ~) = O; ( 2 . 1 )  

e2Av(x, y) --  v(x, y) = O. ( 2 . 2 )  

The f o l i o w i n g  d i m e n s i o n l e s s  q u a n t i t i e s  were  i n t r o d u c e d  in  ( 2 . 1 ) - ( 2 . 2 )  [ 1 ] :  w(x,  y)  i s  t h e  
d e f l e c t i o n  o f  t h e  p l a t e ;  v ( x ,  y)  i s  t h e  r e s o l v e n t  f u n c t i o n ;  ~ i s  t h e  f r e q u e n c y  o f  v i b r a t i o n ;  
k is a large parameter characterizing the bending stiffness of the plate; 5 is the corrected 
thickness of the plate; E is a small parameter characterizing the shear stiffness of the 
plate, 

~=o~*aVglE. k ~'=12(1-v2) a2/h< O = ( 2 ~ - - v ' ~ ) -  h~ , 
h 2 G 

tOa~(l - -  v) e ~ =  lOa - - ' ' ~ G ~ '  ( 2 . 3 )  

where m* is the dimensionless frequency of vibration; a, b, and h are the lengths of the sides 
and the thickness of the plate; O is density; v, G, and E are the Poisson's ratio, shear 
modulus, and Young's modulus in the plane of isotropy. 

In Eqs. (2.3), k, 0, and s include the same powers of h/a. However, they must still be 
distinguished from one another by virtue of their different physical meanings. Although it 
would undoubtedly be interesting to find the asymptotic solutions for several small para- 
meters, this problem is not examined here. 

The dimensionless moments, forces, and other quantities are determined from the relations 

1 * t * a * M,~ = -Us M~, M.~ = ~ M ~ ,  N~ = -~ N~, 

1 u*, ah2 * ah2 * 

H e r e ,  M n and M~s a r e  t h e  b e n d i n g  and t u r n i n g  moments;  N n i s  t h e  s h e a r i n g  f o r c e ;  v* i s  t h e  r e -  
s o l v e n t  f u n c t i o n ;  ~n, ~s a r e  t h e  s h e a r s  a l o n g  a normal  t o  t h e  b o u n d a ry  and a l o n g  t h e  b ounda ry  
respectively. The quantities Mn, Mns, Nn, an, a s can be represented in terms of the sought 
functions w and v: 

where 

Mn Irz = - % ~  Mon + s iBlw + (--  1)t2a 2 a--f-b-Ts j r  Z, 

- (v i . , l ~  = (y -r  + ~iB~,o + (-- t) ~ -- o.~])~, 

1 Ov 
NsJrt = (z,, [rz = ( - -  ~z No~ + (--  l)'-b-~n ) r  , 

' 1 dv 
Nn[r~ = ~s[r ,= (--~.-.~ N o n - - ( - -  t)z'~S)r, 

~,  = s  a 
On 2 v 0 7  ; 

2 1 + B~ = - -  AA* -- 2? vo~A, 
1 - - v ) k i (  l - - v  

v' EG' o) 2 

e ' a ( l - - v ) '  

(2.4) 
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TABLE i 

Boundary conditions of sys" 
tem (2.1)-(2.2) No. i3, V 

t w=O,  M n=O,  M~as=O 0,0 

2 w = 0 ,  M n = O  , ,'J.n=O i , t  

3 w=0, 

4 

5 

6 

7 

8 

011Y 
M ns = O, -- ~ @ xa. s = O 

~ , - 0 ,  % = 0 ,  - - a T + x % = 0  

N n=O,  M n=O, Mns=O 

N u = 0 ,  M n=O, ~n=O 

0w 
Nn=O,  Mns =O, - -~n-/-gC~s=0 

Boundary conditions of the trun- 
cated problem (zeroth approxima- 

tion) 

w o = O, Mon @- If i f  (WO) = 0 * 

W o = O, Mon= 0 

Ow 
w o = 0 ,  _.___~0 ? 

atz 

[ ?~ OMons] ' / ]=o + •  

OU'o t 
% = 0 ,  -- 0,--7+• 0 

OM~ -- O, Mon @ 
Non + Os 

+ k~g(%) = o * 

Non=O, Mort=0 

OM~ " Ow~ = 0 
N~ + -  Os =0 ,  0--7 

0W 0tv 
N n = 0 ,  ct n = 0 ,  - - ~ q - x . a  s = 0  Non=O, __.2 On = 0  

�9 ~ (m) = ( -  l) z 2 [M0,~s lr~qrt+~ 1,~ (s) + Mo.  , Ir~qr~_~/12 (s)]. 

0,0 

i,i 

0,0 

l,i 

0,0 

l,i 

~o __ 2 0 ~ O ~ 
- k ~ OnOs A + 2v ( t  + v)~Z0n0s , 

w h i l e  M0n , M0n s ,  and  Non a r e  t h e  b e n d i n g  a n d  t u r n i n g  moments  a n d  t h e  s h e a r i n g  f o r c e  c o r r e -  
s p o n d i n g  t o  t h e  c l a s s i c a l  t h e o r y :  

Oi w 
M o r t = A ' w ,  M o , = ( t - - v )  0n0s, 

o Ow 
Non ~ A w  + k imiy ( l  + v) 7 n, Nos Aw + k i ~ i y ( l  + v) 0w 

The boundary conditions for system (2.1)-(2.2) are shown in Table I. First let us ex- 
amine boundary condition I, corresponding to hinged support of the edge. Using (2.4), we 
obtain the following on Fs 

w ir z = 0; 

t , z -  ~ 0 iv  i = 0 ;  k" 5- Mon + eZBlw + (-- t) 2e 0-777 rz 

~-r Mo,  s + ~iBiw § ( - -  t /  v - -  2e ~ on--?) rl = 0. 

I t  i s  e v i d e n t  t h a t  t h e  e - t h - o r d e r  e f f e c t  o f  c o n d i t i o n s  ( 2 . 5 b ) - ( 2 . 5 c )  i s  e q u a l  t o  q2 = - 1 ,  
qa = 0. This means that the boundary layer should eliminate the error in the last condition. 

We insert expansion (1.4) into Eqs. (2.1)-(2.2) and boundary conditions (2.5). In ac- 
cordance with Part i, we have the following problem for the zeroth approximation: for Qz0 - 
Eq. (1.8) (i = 0), condition at infinity (1.6), and the boundary condition on F z 

e i k 2 O i Q ' ~  = ( - - t /  t ~.(o) I - -  ~ T ~ o x u , r r  ( 2 . 6 )  o~ ~ 

Aft(i) �9 (i) M(i)  M(i) H e r e  a n d  b e l o w ,  ~.~o~, ZV*o,~s ~,o=,~,o, c o r r e s p o n d s  t o  t h e  i - t h  t e r m  o f  e x p a n s i o n  ( 1 . 4 ) .  

As an example, we will examine the function R10. The latter is determined from Eqo 
(1.9), condition at infinity (1.7), and the boundary conditions 

( 2 . 5 a )  

(2.5b) 

(2.5c) 
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8v(oORI~ ) ~'~ (2 ~176 R,0 ) ( 2 . 7 )  

I n  ( 2 . 6 ) - ( 2 . 7 ) ,  ~ = O, ~ = O. The  f u n c t i o n  w 0 i s  f o u n d  f r o m  Eq.  
conditions. Thus, on F i 

I ~r(o) ( ~ ~ ) ( 2 . 8 )  
wo I q  = 0, 7 " "  o~ -- 2 \o~,@~ + ~ ) r ~  = 0. 

We now n e e d  t o  e s t a b l i s h  t h e  s p e c i f i c  f o r m  o f  t h e  b o u n d a r y  l a y e r s  Qzo and  Q2o:  

t ~(o) s 
Q a o ( ~ , Y ) = P ~ o ( y ) e x p ( - ~ J ,  p~o(Y) -  k2 ~lo~u 1, 

( 2 . 9 )  

Q.,o (x, qa) = Pzo (x) exp ( - -  ~x), Plo (x) --  . ,~2 " "  o*~ 

Inserting (2.9) into (2.7), we obtain the boundary conditions for Rz0 

~176 R~o] = P~o (0) e x p ( - -  qa), 2 a ~  j r  I 

( ~ R~o] = p ~ o ( 0 ) e x p ( - - ~ j .  
2 ~ /r2 

= QI0 I~,. 

( 2 . 1 )  and  t h e  b o u n d a r y  

(2.10) 

It follows from (2.9) that there is a discontinuity at the corner point in boundary condi- 
tions (2.10), i.e., 

2 14(o) P~0 (0) -- P~0 (0) = ~ . ,  o~u r ln h .  

The Green's function of problem (1.9), (1.7), (2.10) is constructed by the transform 
method and has the form 

G(~, q, T, t) = (t/2~)[Ko(ra) + Ko(r2) -- Ko(ra) -- Ko(ra)], ( 2 . 1 1 )  

where K0(r) is a cylinder function of the imaginary argument: 

rl = [(~ _ ~)2 _~ (q _ t)~ll/Z, r2 = [(~ + T)2 + (~ + t)211/2, 
r3 = [(~ - -  x)" + (q + t)2]~/% r 4 = [(~ + ~)2 + (~ _ t)2W< 

Then  t h e  s o l u t i o n  o f  p r o b l e m  ( 1 . 9 ) ,  ( 1 . 7 ) ,  ( 2 . 1 0 )  i s  r e p r e s e n t e d  a s  

nao(~, ~1) = p2o(O)I,(~, q ) +  plo(O)I,(~, ~3), ( 2 . 1 2 )  

z~= y oa(~, ~,.~, t) ] y oa(~, ,q,.~, t) ] 
o~ ~=o exp (-- t) dt, 12 = at ~=o exp ( - -  ~) d~. 

F I F 2 

The functions Rio are constructed similarly in the neighborhood of the other corner 
points. Inserting R10 and R~0 into boundary conditions (2.8) and taking into account Eqs. 
(2.9) and (2.12), we obtain boundary conditions for w 0 on F~. Finally, the boundary condi- 
tions for the zeroth approximation can be written in the form 

.(0) ( -  (s) 4- Ir, nr, (2.13a) k--~ "'~ on --~- t "'~ on 

w 0 lr t = 0, ( 2 . 1 3 b )  

s s ~ ~,) ]zh -- a2Xv(&z, %) ( l = l ,  3), lm = (l 2, 4). 
P=l O~kOl]l 

I n  Eq.  ( 2 . 1 3 ) ,  we a s s u m e d  t h a t  F0 = F4 and  r5 = Fz .  As was  p r o v e n  i n  [ 6 ] ,  t h e  f u n c t i o n  
f i k ( S )  h a s  e x p o n e n t i a l  v a l u e s  [ 6 ,  7] 

I/,~(~1) 1 ~< C exp (--6~1), I]1,(q,)l -~< C exp ( - -6q,)  ( 2 . 1 4 )  

(0  < b ~< 1,  C and  5 a r e  a r b i t r a r y  c o n s t a n t s ) .  

F o r  w 0, we o b t a i n  a g e n e r a l i z e d  e i g e n f u n c t i o n  p r o b l e m  and t h e  n u m b e r s  ( 2 . 1 ) ,  ( 2 . 1 3 ) .  
We w i l l  r e f e r  t o  t h i s  a s  t h e  t r u n c a t e d  p r o b l e m  ( z e r o t h  a p p r o x i m a t i o n )  o f  t h e  i n i t i a l  p r o b l e m  
( 2 . 1 ) - ( 2 . 2 )  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  shown i n  T a b l e  1. I t  f o l l o w s  f r o m  ( 2 . 1 4 )  t h a t  t h e  
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right sides of (2.13) differ appreciably from zero only near the points of inflection. In 
the simplified analysis of the truncated problem, the effect of the correction factors fk~(S) 
in the boundary conditions can be ignored. Let us assume that the solution of the truncated 
problem has been found. We then establish the edge effects in expansion (1.4), thus com- 
pleting the construction of the solution (zeroth approximation). 

Let us now proceed to the construction of the subsequent approximations w i and v i of 
problem (2.1)-(2.2) with the boundary conditions from Table 1 (i = i, 2, 3 ..... n). Insert- 
ing expansion (1.4) into the equation and the boundary conditions of the initial problem and 
equating terms of the same order of smallness to zero, we obtain the following problem. 

For Qi~, we have Eq. (1.8), boundary conditions (1.6), and 

and 

o"-0~ t ~/t(O B~w~_2lr~. ( 2 . 1 5 )  

The a n g u l a r  bounda ry  l a y e r  Rzi  i s  d e t e r m i n e d  from Eq. ( 1 . 9 ) ,  bounda ry  c o n d i t i o n s  ( 1 . 7 ) ,  

02 
2 R~ 

2 
20__Bl~ 

an~ 

- -  ]~1~ ]I'l = Q2 i  - -  2 -02"J--2 
Ox 2 r z" 

g]~> [ "Qi,i-i~ 
, y -  Fz" 

(2 .16)  

The function w i is determined from Eq. (2.1) and the condition on the boundary. Thus, 
on F l 

k-- ~j M~ -- 2 \( ~ 02j~li ~ O~lO,q 202Bli ) ri = -- Blwi-2 + 2 [Qli-I+ Qii-I + Q~i-1], w~Irl = (~. ( 2 . 1 7 )  

Here and below, the expressions with negative indices are identically equal to zero. 

We seek the solution of problem (1.8), (1.6), (2.16) in the form 

Q.,(~,, y) = [p~o(y)+ [~ (~ ,  y)] exp ( -gO,  ( 2 . 1 8 )  

where the first term is the solution of homogeneous equation (1.8) with inhomogeneous bound- 
ary conditions (2.16). The second term is the solution of inhomogeneous equation (1.8) with 
homogeneous boundary conditions (2.16). Then 

( ~ ~,l(i) How~-2) , 

oo ( 2 . 1 9 )  

i ! -- s (~ )exp (~  T) g~(~, g) d'c. ~i  (~, Y) . . . .  sh (~:) g~i (r. y) dT 

It is not hard to show [see (1.8)] that the discontinuity gli(gl, Y) = Ti(~I, g) exP(--~O 
(~(~,, y ) i s  a polynomial in ~i with coefficients dependent on y). 

Thus, $ii(~i, Y) is a bounded function in ~z, and the following exponential estimate 
holds for Qli 

1Q.(~. y) I ~  c(u) exp ( -6~) .  

With a l l o w a n c e  f o r  ( 2 . 1 6 ) ,  ( 2 . 1 8 ) ,  t h e  a n g u l a r  boundary  l a y e r  i s  d e t e r m i n e d  from t h e  
f o l l o w i n g  c o n d i t i o n s  on t h e  bounda ry .  Thus,  f o r  Rzi  

where 

02R 9 1i .~2 Hl~ [r~ = [Psi (0) + • (q~)] exp (-- "q~). 

2 oiB~ 
On ~ Rl~[r 2 = [Ply(O) + • exp(-- ~1), 

(2.20) 

• ffi~(O, "ql) + [[~1~_~(0, q,) + p2~_2(0)1~. 
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Here, as for the zeroth approximation, the boundary conditions are discontinuous at the 
corner point. The magnitude of the first-order discontinuity is determined from (2.15) and 
the analogous condition for Q~i" Restrictions on the function p~i(s) and, thus, on w i follow 
from (2.20): the functions p~i(s) are bounded derivatives p~i,ss(S)Is=0+_0 at i = 0, I, 2, .... 
n - 2. 

The solution of problem (1.9), (1.7), (2.20) is found from formulas similar to Eqs. 
(2.12): 

Rxi(~, B) = pf~(0)Ix(~, B) + p~,(0)If(~, B) -~ T~,(~, ~1) + T~(~, ~1), 

0G(  n �9 t) I o , p ( -  t) dt, Tli J 0% I'~=0 
1" I 

Tfi = ~ OG (~-' otn' ~, t) t=o • ('0 exp (-- T) dT. 
r 2 

E x p r e s s i o n s  f o r  I k ( g ,  D) a r e  c o n t a i n e d  in  ( 2 . 1 2 ) .  

As a result, we obtain the boundary conditions for the truncated problem (the i-th ap- 
proximation) : 

uh Ir z = 0; (2.21a) 

1 M(i) (o ~/t(i) k--~ on r, § (-- 1)'2 [Mo,, Irt~rz+lht (s) + ~,. o,~ ]rtnrt_lh2 (s)] = 

= B~wi-2 § 2Qti-1 + g m  (s) + gm (s), 

( 02Tz~(~l' "~)) (l-~ i, 3), (2 .21b)  

g z ~ ( s ) = \  ~ Jr, (1=2,4).  

The f u n c t i o n s  g~k i (S )  have  e x p o n e n t i a l  e s t i m a t e s  of  t h e  t y p e  ( 2 . 1 4 )  and d i f f e r  s i g n i f i c a n t l y  
from ze ro  o n l y  in  t h e  n e i g h b o r h o o d  of  t h e  c o r n e r  p o i n t s .  

Knowing t h e  s o l u t i o n  of  t h e  t r u n c a t e d  problem ( i - t h  a p p r o x i m a t i o n ) ,  we r e c o n s t r u c t  t h e  
boundary  e f f e c t s .  The t r u n c a t e d  problem ( i - t h  a p p r o x i m a t i o n )  i s  found on a spec t rum and 
s h o u l d  t h u s  s a t i s f y  c e r t a i n  s o l v a b i l i t y  c o n d i t i o n s  (which a r e  n o t  p r e s e n t e d  h e r e ) .  

As can be seen  from Tab le  1, t h e  boundary  c o n d i t i o n s  a r e  d i v i d e d  i n t o  two g roups :  1, 3, 
5, 7, and 2, 4, 6, 8. The s o l u t i o n  of  t h e  i n i t i a l  p roblem w i t h  boundary  c o n d i t i o n s  of  t h e  
f i r s t  group i s  c o n s t r u c t e d  in  a manner a n a l o g o u s  t o  problem ( 2 . 1 ) - ( 2 . 2 ) ,  w i t h  boundary  con- 
d i t i o n s  from Table  1. I t  i s  e a s i l y  seen  t h a t  f o r m u l a s  ( 2 . 6 ) - ( 2 . 7 ) ,  ( 2 . 9 ) - ( 2 . 1 4 )  a r e  v a l i d  
f o r  t h e  b o u n d a r y - l a y e r  p a r t  of  t h e  a sympto t e  f o r  t h e  z e r o t h  a p p r o x i m a t i o n ,  w h i l e  f o r mu la s  
( 2 . 1 5 ) - ( 2 . 1 6 ) ,  ( 2 . 1 8 ) - ( 2 . 2  ! ) a r e  v a l i d  f o r  s u b s e q u e n t  a p p r o x i m a t i o n s .  The boundary  c ond i -  
t i o n s  of  t he  t r u n c a t e d  problem a r e  found by t h e  e l i m i n a t i o n  method ( s e e  P a r t  1) .  We w i l l  
t a k e  a c l o s e r  look  a t  t h e  ca se  of  edge 5, f r e e  of  c o n s t r a i n t s .  The f i r s t  boundary  c o n d i t i o n  
o f  t h e  t r u n c a t e d  problem w i l l  c o i n c i d e  w i t h  ( 2 . 1 3 a )  ( i  = 0) and (2 .21b)  ( i  = 1, 2 . . . . .  n ) ,  
w h i l e  t h e  second boundary  c o n d i t i o n  on r~ w i l l  have  t h e  form 

N (Oor, r I = -- k ~ ~-~ [Q,i + Qfi -~- Q~i + B,i -~- Bai]r/. 

I n s e r t i n g  Q~i and R~i i n t o  t h i s  e x p r e s s i o n ,  we f i n d  f o r  t h e  z e r o t h  a p p r o x i m a t i o n  w 0 t h a t  

.N (i) ]~2[ 0 ~ t a I  1(0, nl ) 
on [r~ ~ -- -~y P~o(g) -- -~  P~o(O) exp( - q~) ~- ~ -  P~0 (O) o~  + 

-b, -~-Plo (0) 0n ~ ~ P~o(0) exp ( - q=) + ~ Pao,~, On = -~ --U p~~ 0n--~ J" 

By direct differentiation, we find from (2.11) that 

~ [~ t ] = ~ [ ~  J = 0 ,  oq Or ~=o t=o 5(q- - t ) ,  ~ Ot t=o t=o 

where 6(q - t) is the Dirac delta function. It then follows from (2.12) that 
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aI:i (o, ~l) a[,. (o, ~l) 
an = exp (--  q), a ~  = 0. ( 2 . 2 2 )  

With  a l l o w a n c e  f o r  Eqs.  ( 2 . 2 2 ) ,  ( 2 . 9 )  and t h e  c o r r e s p o n d i n g  e x p r e s s i o n s  f o r  t h e  o t h e r  
sides of the plate, we finally write the boundary condition for the zeroth approximation: 

N(~) [r~ /~2 a a M(O) (2.23) 0~ = -  ( - l )  z ~ p ~ 0 ( s )  l r ~ -  a~ ~ 

B o u n d a r y  c o n d i t i o n  ( 2 . 2 3 )  c o r r e s p o n d s  t o  a g e n e r a l i z e d  K i r c h h o f f  f o r c e .  

We similarly obtain the boundary conditions of the truncated problem (i-th approxima- 
tion): the first coincides with (2.12b), while the second has the form 

2 

N<o a M(i) Ir I a i X (~p~i (0, n) - -  • (~)) exp ( - -  ~) (p~ ---- 2, P2 = 4). o. + W  o~ - av ~ ( v ) - T  ~=~ 

Thus ,  we o b t a i n  t h e  K i r c h h o f f  t r a n s f o r m  in  t h e  n e i g h b o r h o o d  o f  a c o r n e r  p o i n t ,  i . e . ,  f o r  a 
p i e c e w i s e -  smoo th  c o n t o u r .  

L e t  us p r o c e e d  t o  b o u n d a r y  c o n d i t i o n s  2,  4 ,  6 ,  8 ( s e e  T a b l e  1 ) .  As an e x a m p l e ,  we w i l l  
e x a m i n e  c o n d i t i o n s  2.  The  l a t t e r  c o r r e s p o n d  t o  h i n g e d  s u p p o r t  o f  an e d g e  w i t h  a r i g i d  d i a -  
phragm p r e v e n t i n g  s h e a r  o f  t h e  s a n d w i c h :  

wile z = O; ( 2 . 2 4 a )  
f O~v 

k-T Mort q- e=B~u ' + (-- 1) ~ 2e ~ o-ag-aTs r~ O; ( 2 . 2 4  b) 

Ov 
kt~ !V~ - -  ( - -  t)t 0-n- Iri = 0 "  (2.24C) 

Here, the s-th-order effect of boundary conditions (2.24b)-(2.24c) is equal to q2 = -I, 
qa = i. In accordance with Part i, the boundary layer is determined from (2.24c). Thus, 
for Qli we have the boundary conditions 

e~_ 1 OQli l N({) 
o~ r~= ( - 1 ) ~ 7  0, r r 

The a n g u l a r  b o u n d a r y  l a y e r  Rz i  i s  d e t e r m i n e d  f rom Eq. ( 1 . 9 )  and t h e  b o u n d a r y  c o n d i t i o n s  

ev_ , aB~i a02i sv_lOBli a01i I 
7 PI F=-- av [r 2' a~ I #x Pi' dql 

where # = i, # = i. 

The ordinary boundary layer contains the multiplier a, while the angular boundary layer con- 
tains s 2 Then we find the functions w i from Eq. (2.1) and the boundary conditions 

~L'i Ir z - - 0  . . . .  0,~= Biuq-2 - -  ( - -  I)  z i -  ( 2 . 2 5 )  
ta(nle)  Os ~ ] ' r [  

The r i g h t  p a r t  f o r  t h e  z e r o t h  and f i r s t  a p p r o x i m a t i o n s  i n  ( 2 . 2 5 )  i s  i d e n t i c a l l y  e q u a l  t o  ze ro .  

Fo rmu las  o f  t h e  t y p e  ( 2 . 1 8 )  a re  v a l i d  f o r  QL i -  We have t h e  f o l l o w i n g  r e l a t i o n s  f o r  t h e s e  
formulas 

Pli(y) = - -  k2 ~. 02 

}1i ($, y) -- - -  S ch (T) gli (~, Y) d~ - -  j" ch (~1) gli (*, Y) exp (~  - -  ,)  tiT. 

The f o l l o w i n g  f o r m u l a  i s  v a l i d  f o r  a n g u l a r  b o u n d a r y  l a y e r  R l i  

R,, (~, q) = - -  ~ G~ ($, n, ~, t)[,=0 [P.ai., (0) + ~2i,, (0, t)] exp (--  t) dt - -  
F 1 

- -  S G1 (~' q' ~' t) I,=0 [Pli.t (0) q- ~1i,, (~, 0)] exp (--  T) & 

P2 
1 

(G~ (L n, % t) = m~- [Ko %) + Ko %) + Ko %) + [<o %)D. 

585 



As regards boundary conditions 4, 6, and 8 from Table i, the procedure for obtaining 
the boundary conditions of the truncated problem is similar to the procedure used above. 
Table 1 shows the boundary conditions for the zeroth approximation - which, except for condi- 
tions 1 and 5, correspond to the boundary conditions in the classical formulation. It should 
be pointed out that boundary conditions 3 and 4 include the following additional terms 

Non • (Non), •  , ~ k  --~ + ~ / '  -~- ~ 4 3 

these terms being small, since ki>>|. They describe the effect of shear of the entire sand- 
wich through its thickness. It should also be noted that the Kirchhoff transform does not 
always exist for a free edge. For example, while the former does exist for edge 5 - which 
is free of constraints - it does not for the free edge with the diaphragm preventing shear of 
the sandwich. In the second case, it is necessary to assign the shearing force in the classi- 
cal formulation in place of the generalized Kirchhoff force. 

Boundary conditions 1 and 5 contain additional terms of the form 

M0n~ Irmrz+]~ (s), Ih~ (s)[ <~ C exp ( -  ~s). 

Their appearance is related only to the presence of the points of inflection, because they 
would not be present in the boundary conditions of the truncated problem if the boundary 
were smooth [3-5, I0, ii]. This result can be explained as follows from a mechanical view- 
point. The turning moment Mn, s on the side F i in the neighborhood of the corner points is 
experienced as a bending moment on the adjacent sides FE+ I and FE_ I. Also, the function 
fEk(s)icharacterizes the depth of penetration of this additional bending moment in the neigh- 
borhood of the corner points on the adjacent sides FE+ l and Fs I. 

3. Let us now examine the problem of the free vibration of a three-layer plate [2] 

(1 - - ~ i A ) A A X ( x ,  g ) -  ~ k ~ ( l -  ~iA)X(x, g ) :  0; ( 3 . 1 )  

eiAv(x, y) - - v ( x ,  g) = 0 ( 3 . 2 )  

(X is the resolvent function; v is a function characterizing the shear of the three-layer 
sandwich). Here, we introduce the notation 

=~*a/p/E, k 2 : t 2 ( t - v i )  ai/hi~,, 
~2 __ l - - v  h 2 ~2 = h2 

2 fi,a 2' ~ ,a  ~' 

The s m a l l  p a r a m e t e r s  E and ~ a r e  o f  t h e  same o r d e r  b u t  h a v e  d i f f e r e n t  m e a n i n g s  in  a m e c h a n i c a l  
c o n t e x t :  t h e  f i e l d  o f  t h e  a n g l e s  o f  r o t a t i o n  c o n s i s t s  o f  a p o t e n t i a l  p a r t  ( c o r r e s p o n d i n g  t o  
~) and a c u r l  p a r t  ( c o r r e s p o n d i n g  t o  e ) .  Thus ,  t h e s e  q u a n t i t i e s  mus t  be  d i s t i n g u i s h e d  f rom 
e a c h  o t h e r .  

The f o l l o w i n g  p a r a m e t e r s  e n t e r  i n t o  Eqs .  ( 3 . 3 ) :  ~* i s  t h e  d i m e n s i o n a l  f r e q u e n c y  o f  
v i b r a t i o n ;  a ,  b ,  and h a r e  t h e  l e n g t h s  o f  t h e  s i d e s  and t h e  c o r r e c t e d  t h i c k n e s s  o f  t h e  p l a t e ;  
E and v a r e  t h e  c o r r e c t e d  Young t s  modulus  and P o i s s o n ' s  r a t i o  [ 2 ] .  The s m a l l  p a r a m e t e r  
c h a r a c t e r i z e s  t h e  n a t u r a l  b e n d i n g  s t i f f n e s s  o f  t h e  l o a d - b e a r i n g  l a y e r s ,  w h i l e  t h e  l a r g e  
p a r a m e t e r  k c h a r a c t e r i z e s  t h e  b e n d i n g  s t i f f n e s s  o f  t h e  e n t i r e  t h r e e - l a y e r  s a n d w i c h .  A l s o ,  
q ,  i s  t h e  m u t u a l  l o c a t i o n  o f  t h e  l a y e r s ,  ~ ,  i s  t h e  c a p a c i t y  o f  t h e  p l a t e  t o  r e s i s t  a t r a n s -  
v e r s e  l o a d ,  and ~ ,  i s  a p a r a m e t e r  e q u a l  t o  t h e  r a t i o  o f  t h e  t r a n s v e r s e  f o r c e  e x p e r i e n c e d  
by the filler to the total transverse force. 

Although the ratio h/a is of the same degree in each of the parameters k, e, and ~, 
each case is different because the ratio has different physical meanings. We will examine 
the asymptote only for ~. 

We introduce the dimensionless moments, generalized moments, forces, and other quanti- 
ties: 

t �9 ~h  = a N* 

where M n and Mns are the bending and turning moments; H n and Hns are the generalized bending 
and turning moments; N n is the shearing force; ~n and ~s are the normal and tangent angles 
of shear. These quantities are expressed as follows: 
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TABLE 2 

Boundary condi t ions  of system 
No. (3 .1 ) - (3 .2 )  

I w = 0 ,  Mn=O, 

2 u, = O, M n = O, 

3 w = 0 ,  

H n = O, Hns = 0 

H n = O, ~x n = 0 

Ow 
--~n = 0 '  % = 0 ,  H n ~ = O  

Ow 
u ' = O ,  ~ = 0 ,  ~z n = O ,  a s = O  

5 N n = O, M n = O ,  H n = 0 ,  H n s = O  

N n=O, M n=O, H n=O, a n=  

GOW 
7~n = 0 '  a s = 0 .  N n=O,  H n s = (  

8w 
8 -~n = 0 ,  ~ s = 0 ,  N n = 0 ,  a n = 0  

iBoundary conditions of Eq. (3.1) 
(zeroth approximation) 6, Y 

w o=0,  tIon+F(Wo)=O*, ! 2,0 

[ 

Mon+({  --O) F(wo)=O 

w o = 0 ,  Mon = 0 ,  H e n = O  3,1 

w ~  ---~ ' AXe+ 2,0 

0 
+ ~ aon , = 0 

Ow~ ~ AX o = 0 3A % = 0 ,  - ~ -  = 0, 

2,0 
o 

No, ~ + (i --  O) ~ Hon ~ = O, 

Mon + (~ - o> ~ (%) = o*, 

Hon + F (%) = 0 ** 

N o n = O ,  Mon : O, Hon = O 

am~ (t - -  ~) ~"~-s It~ -~-n = 0 '  Non+ v 

0 0 
- -  ' - -  H : 0 ' *  8n AXo T Os ons 

&v~ O, Non 0, ~ AX o 0 
dtz 

3,1 

2,0 

3,t 

* F (Wo) = (-- t) / (l -- #) 2 [Hon s irtr, rz+ ~ h ,  (~) + ~o.~ ]rz gr~_, h2 (~)]- 

_____- ~ Ft ~ 

M ~ [ n -  k~ Mo.~ - -  ( - -  t)  ~ ~ ~ o,? ~ n'  

H n [ r  t -  ~/, r 0% ] k2 [Hon + (--  t) I (1 - -  v) 0-n-~sJrz' 

N~ IF z --  k2 2 e z ~ r /  

1 - - 0  [ 2 0 A X (__ t~z I O v ]  
O~ n in - ~, _ 1 - ~ ' a ~  - " ' 7 - o T J ~ ;  

 Ax-<-t ~176 
- v--7- ~ , ~-'~- o--Tire' 

w ( t - - ~ - A )  X,  M o ~ = A * w ,  Mo~, = (f  - -  v) a ~  On Os ' 

02X ~ Aw. 
Hon = A ' X ,  Hon, = ( t  - -  v) 7 ~ Y '  Non = 

The b o u n d a r y  c o n d i t i o n s  f o r  s y s t e m  ( 3 . 1 ) - ( 3 . 2 )  a r e  shown i n  T a b l e  2.  The  f a c t  t h a t  t h e  
boundary conditions in v for the three-layer and transversely isotropic plates are of the 
same type allows us to apply the results in Parts 1 and 2 to the case of three-layer plates 
without restrictions, Table 2 also shows the boundary conditions of the truncated problem, 

It was proven that the Kirchhoff transform (generalized shearing force) exists in the 
neighborhood of a corner point. The notation *r in conditions 5 and 7 indicates that (i - 
%)H0n s should be replaced by M0n s in the Kirchhoff transform, since M0n s is the moment of 
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the more general order. This substitution is made necessary by the fact that the asymptotic 
calculations are more rigorous than the initial hypotheses. The latter are based on the 
Grigolyuk-Chulkov theory of three-layer plates: the bearing layers are described by the 
Kirchhoff-Love theory, while the filler is described by a theory which allows for shear. 
Thus, the moment Hns (describing the turning moment in the filler) needs to be replaced by 
Mns (the turning moment for the entire plate). 

The refined theories of Ambartsumyan for anisotropic plates and Grigolyuk and Chulkov 
for three-layer plates are of the same order of accuracy. Thus, the appearance of the addi- 
tional terms in boundary conditions 1 and 5 in Table 2 

(M0o~ Ir~nr~+l)/,~ (s), l/z~ (s) l ~< c exp (- as) 

has t h e  same p h y s i c a l  e x p l a n a t i o n  as f o r  t he  t r a n s v e r s e l y  i s o t r o p i c  p l a t e .  The p r e s e n c e  
of these terms is connected mainly with the accuracy of the hypotheses serving as the basis 
of the theory of bending for both transversely isotropic and three-layer plates. Only the 
use of more accurate hypotheses could yield a definitive answer to questions regarding the 
behavior of the solution in the neighborhood of corner points in the case when the bending 
and turning moments on the boundary are assigned. 
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