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ASYMPTOTIC ANALYSIS OF PROBLEMS ON THE FREE VIBRATION OF RECTANGULAR
TRANSVERSELY ISOTROPIC AND THREE-LAYER PLATES

V. M. Kornev and A. 0. Mul'kibaev UDC 539.3

This article examines problems concerning the free vibration of transverse isotropic
and three-layer rectangular plates (refined theory of bending accounting for shear through
the thickness). The problems are described by a system of two equations, the first being of
the order 2m (m = 2, 3 for transversely isotropic and three-layer plates, respectively) and
the second a singularly perturbed second-order equation containing the small parameter e.
For transversely isotropic plates, & characterizes the effect of transverse shears, while it
characterizes the shear stiffness of the three-layer sandwich in the case of three-layer plates.
We construct asymptotic expansions of the solutions with allowance for angular boundary-
layer solutions, when the parameter € is small. In this case, the second equation is a per-
turbation equation whose solution is in the nature of a boundary layer (edge effect).

Different types of boundary conditions are examined for the initial systems. We study
the relationship between the boundary conditions of the initial and truncated problems (with
the perturbation equation omitted). Substantiation is provided for the transition from the
boundary conditions in the refined formulation to the classical formulation in the neigh-
borhood of points of inflection (i.e., for a piecewise-smooth contour). Use of the Kirch-
hoff transform is validated for a free edge near a corner. Although a separation of variables
is often possible for truncated problems, the complete system of equations does not permit
such separation.

In the classical theory of the bending of plates, there is a contradiction between the
overall order of the system of equations (two biharmonic equations for the normal deflection
and the stream function) and five natural static boundary conditions. Thus, on the free
edge, the bending and turning moments, the shearing force, and two forces in the plane of
the plate are equal to zero. In the classical theory, four rather than five boundary condi-
tions are established for the free edge if the Kirchhoff transform is used. There are theo-
ries which are refinements of the classical theory and make use of more general hypotheses in
deriving the equations (allowance for shear through the plate thickness). The contradiction
between the overall order of the system and the natural static boundary ocnditions disappears
in these theories. The form of the system which is simplest for analytical purposes is prob-
ably that presented in [1l, 2}. The order of this system is higher than in the classical
theory due to the presence of a second-order equation having a solution of the edge-effect
(boundary-layer) type.

Researchers have developed a method of changing over from the boundary conditions of
the refined theory to the boundary conditions of the classical theory [3-5] (an example

Novosibirsk. Alma-Ata. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika,
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being the use of the Kirchhoff transform for a free edge) in the case of smooth contours.

In the case of rectangular plates (the case of a piecewise-smooth contour), it is necessary
to substantiate these transformations near corner points. We propose an approach in which,
with allowance for boundary-layer solutions {6, 7], asymptotic analysis is employed to formu-
late the boundary conditions of truncated problems by the elimination method [8, 9].

1. We will examine a system of two linear equations with constant coefficients in a
4
plane rectangulatr region D = {(x, y): 0 < x < 1, 0 <y < b/a} with the boundary ﬁF::IU r, (T,
=1

are sides of the rectangle, numbered in the counterclockwise direction beginning with the
side x = 0):

Loz, y) = o*Muw(z, y), edv(z, y) = v(z, y). (1.1)

Here, L, and M, are uniformly elliptic operators of order 2m, 2k (m > k), respectively; &
is the Laplace operator; w is the natural frequency of the vibrations.

The boundary conditions for system (1.1) have the form
Np
Baw -~ 3 ara(®)Dir=0 (k=1,2,3,...,m,m+1), (1.2)
lat=0
where o = (a,, a,); la| = o + o, D% = 8*/dn%19s%; the order of the operators By is equal to my
(my < 2m).

With specific operators L,, M,, and By and coefficients ayy, Egs. (1.1)-(1.2) describe
problems on the free vibration of transversely isotropic and three-layer plates.

We will assume that boundary conditions (1.2) are described in canonical form if they
satisfy the following requirements.

A, Let apy(e) ~ 0(ePka) (pkq are integers). Then quantity dkg, determined from the
relation qpy = @1 — Pkg» Will be referred to as the e-th order of the effect on I' of the
operator apy(e)D® with fixed a. We shall call the number ¢, = max ¢s, the e-th order of the

o

effect of the k-th boundary condition (1.2) on I'. We assume that the boundary conditions are
written so that ¢, <<g¢zy (k =1, 2,...,m).

We will use Tﬁ to represent a differential operator whose terms in the k-th boundary
condition have an e-th-order effect equal to qy and we will call it the principal part of the
boundary conditions in v. We will use Ty to represent the remaining terms. Then conditions
(1.2) have the form

B + Ty + Twlp = 0.

B. If in the last s conditions (1.2) qp-g41 =.++ = dp = qp+1» then the last condition
in (1.2) k = m + 1 contains the maximum derivative with respect to the normal to the boundary
in the principal part.

It is fairly often the case in practical problems that € is small. It is known that
the solution of the perturbation equation is in the nature of a boundary layer and is non-
trivial only in the neighborhood of the boundary I'; this solution rapidly approaches zero
with increasing distance from the boundary.

Let us proceed to the formulation of the degenerate problem at € » 0. It is obviously
connected with the solution of the first equation of system (1.1) — for which we must for-
mulate m boundary conditions on T.

The algebraic approach {10, 11] is based on the fact that the last condition in (1.2)
is dropped and the function v is omitted from the remaining conditions. We thus obtain the
boundary conditions of the degenerate problem

Lowo(x, y) = mziwowo(x'z y)i Bhwoll" == 0 (Ic = 1’ 27 3)“'; m)' (1.3>

As is known, in the general case (such as a free edge), the boundary conditions of de-
generate problem (1.3) do not coincide with the boundary conditions of simplified plate theo-
ries. The difficulties encountered in formulating the boundary conditions of degenerate
problems in such cases are related to the fact that complete information is needed on the
structure of the solution of the perturbation equation.

Use of the elimination method [8, 9] developed for plates and shells with a smooth con-
tour [4, 5] and in the neighborhood of points of inflection [7] makes it possible to overcome
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these obstacles. This method is based on the fact that information on the solution of the
perturbation equation is accounted for in the first m boundary conditions (1.2).

We will assume (condition A) that inhomogeneous equations (1.1) with inhomogeneous bound-
ary conditions (1.2) have a unique solution if the solvability condition is satisfied.

We will construct the solution of problem (1.1)-(1.2) in the following form (e « 1) [6]

we (z, y) = Zjlo glw; (z, y) - e"t1Z, (z, y),
[ n - (1.4)
Ue (Iv y) =¢b iZo gt FOil(Elv y) _[_ Q‘Zi (.Z, 7]1) + Qai (§21 y) + Q4i (J), ﬂz) +

i=

+ &¥ (Rli (gli Tll) + R‘li (Ezv TIL) + R3i (‘Ez» 7]2) + R4i (glv 7]2))] -+ gntiz, (xv y)}v

where &, = a/e; & = (1 — 2)/e; My = y/e; W, = (@ — y)/e; Za(2, ¥) and z,(x, y) are the remainders of
the expansion. It should be noted that the boundary layer in (1.4) (the second relation)

is constructed with allowance for the factors ef (see [10, 11]) and €Y. The meaning of these
factors will become clear from the ensuing discussion.

The role of the functions in (1.4) will become evident from a description of the pro-
cess of their determination. Expansion (1.4) formally satisfies Eq. (1.1) and boundary con-
ditions (1.2). The functions wj describe the main part of the solution of problem (1.1)-
(1.2). Inserting (1.4) (the first relation) into the first equation of system (1.1) and
equating first-order terms in e to zero, we obtain

Lowi(z, y) = @*Muw;(x, 1), LoZs(z, y) = 0*MZa(z, ¥) (1.5)
(i =1, 2, 3, ..., n).
It is evident that the functions wj and their derivatives are invariant with respect to €,
since the first equation of (1.1) is independent of e, i.e., its terms are of the same order.

The boundary-layer part of the asymptote consists of two types of boundary functions: Q
and R. In the neighborhood of each side T'y of the rectangular plate we construct ordinary
boundary layers Qqj which are described by ordinary differential equations and are boundary-
layer functions in one variable. For example, in the neighborhood of T';, Qgi(%;, y) is a
boundary-layer function in the variable £, etc.

Qui&, ) >0 at E — oo, (1.6)

The boundary functions Qg; change as follows in relation to e:
a!(l| —
o Qu~e Qu Qu~O0(1), |a|=a, -+ a,.

an® 952

In accordance with [6], boundary functions Ry; in two variables determined from elliptic
equations are introduced in the neighborhood of points of inflection. Thus, in the neigh-
borhood of a vertex (0, 0), Rg; (£,, n,) is a boundary-layer function in the variables £, and n;:

Ri(E, m)—>0 at &4 ni—oco. . (1.7)

The angular boundary layer Rg;(&, n) changes as follows in relation to e:

o
? Ry~ ™Ry, Ry~0).

o« a
On 1952

Inserting (1.4) (the second relation) into the second equation of system (1.1) and
equating to zero the terms of the first order with respect to e for the functions Qp3, Rgi,
and z,, we obtain the following iterative chain of equations for Q,i:

6201%%3 —Qu=2¢guGEny E>0 0<y<h/a) (1.8)
(81, ¥) = —0%Q4:,/04%, g1p = gu =0 (=0, 1, 2, ..., n).

Here, the variable y is a parameter.

For Rgi(&1, n1)
("’“+ A —1)Ru<§1,m>=o (&> 0, n,>0). (1.9)

Sr2 2
agl 67]]_
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The boundary functions Qgj, Rg; (L = 2, 3, 4) are determined from similar equations
in the neighborhood of the other sides and corner points. For the remainder z,(x, y)

n 1
2 0y i/ O (1.10)

=1 k=0

EA—=1Nzn(z, y)=h(z, y), hiz,y)= ;

The specific form of the boundary layers is obtained with allowance for the boundary
conditions. As an example, we will examine the side I'y. Inserting expansion (1.4) into
boundary conditions (1.2) and ignoring the mutual effect of the boundary layers (i.e., taking
only the functions Qyj, Q,i, Quis Ryi» R,i into account in the boundary conditions on T,),
we find )

n noo o
By (2 g'w; + SRHZn) + & [20 e (e an(e) DIQu -+
i=o i=
i
= 0.
r

4 “ap (e) DE(Qi + Qi) + 6" gy (e) Dy (Ry: + Rap)) + 8n+1zn] (1.11)

Here, DT, _ aial/agiﬁlayag; Dg' — a[a]/axalanaz; Dg _ 8|OL|/6§T16“0’42.

It is necessary to keep in mind that in boundary conditions (1.11) the boundary layers
are written in a transformed coordinate system. It should be noted that only the last condi-
tion in (1.11) k = m + 1 contains the lowest degree of the small parameter e as a factor.

By virtue of conditions A and B, in the zeroth step of the iteration the functions Q.3, Ry,
and R,; should compensate for the error in the last boundary condition of (1.11) k ='m + 1

— —% > Y—%
[ By +- e At Q) + e ThiQu + & ThiaRi] +
+ 35 [S——ngsnﬂQm + sv’ulT}nHqu] !F] =@, (1 " 12)

where %, = max ([&| — Priya)i % = MaX (& — Pmyira)-  The operators T3+1(T;+1) contain only those
a xX

., —%,
derivatives in which the coefficients are of the order ¢ “(e 2}

In accordance with [6], the function Q,, eliminates the error for w,, while R;,(R,,)
eliminates the error introduced by the function Q,,(Q,,) in boundary condition (1.12) in the
neighborhood of the point of inflection (0, 0) [the point (0, a)]. Thus, condition (1.12)
takes the simpler form

ﬁ_
€ qmﬂ(’Z‘Oﬂlﬂalo)ll‘1 = — Bmyywg . (1.13)

The main part of the solution w, has already been constructed. Similar conditioms can be
found for the functions Qg, on Iy.

For the functions R;, on T'; we obtain
=% Xy
g 1T&+1R1HF1::“8 "T;+1leff (1.14)

We have conditions similar to (1.14) for R;, on T',. The boundary conditions for the other
angular boundary layers Rg, near the other vertices of the rectangle are constructed in a
similar manner.

To properly construct the iteration process, quantities of the same order of smallness
should remain in the left and right sides of (1.13) and (1.14). We thus write the parameters
B and y in expansion (1.4) in the form

ﬁ ZQm+1s Y :%1—%2.

We then assemble terms with the same degrees of the small parameter in fgs. (1.11) (k =
1, 2, 3,...,m). First we collect the terms with & to the zeroth degree:

Brw, Ir, = Dy, (Q19s Qo) Qagr Bygr -+ 2) IFl- (1.15)

The right side of conditions (1.15) is a differential operator of the boundary-layer
functions determined in the neighborhood of Iy and the adjacent sides. By virtue of condi-
tions (1.13) on T, and similar conditions on Ty, the functions Qg, are found through w,. It
follows from (1.14) and the analogous conditions in the neighborhcods of the other points
of inflection that Ry, is also determined through w,. Taking the formulas expressing Qg and
Rgo in terms of w, and inserting them into the right sides of (1.15), we arrive at boundary
conditions for w,

Buvy — DR (we)lr, =0 (k=1,2, ..., m). (1.16)
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Thus, we have problem (1.5), (1.16) to determine w,. We will refer to this as the
truncated problem. Knowing its solution, we can easily reconstruct the boundary layer.
Thus, the zeroth approximation of w,, Qg,, and Ry, in the initial problem has been found.

Placing the terms with € to the first degree in (1.11), we obtain boundary conditions to
determine the boundary layers Qy, and Ry,. These conditions are similar to (1.13) and (1.14),
except that the right side is dependent on w,, w;, Qg,, and Rg,. The problems for the subse-
quent approximations are formulated in a similar manner.

The remainders satisfy the boundary conditions

Nh [ X
BiZn+e® 3 ana(e) D2nlr = 2 €'4; (Qu, Ru)
jof=0 i=0 (1.17)

k=123, ...,mm-+1)

(A; are certain differential operators). In accordance with condition A, problem (1.5),
(1.10), (1.17) has a unique solution.

Let us proceed to the study of specific problems.
2. We will examine a system of equations describing the free vibration of a transversely
isotropic rectangular plate:
AAw(z, y) — 01 — OA) wlz, y) = 0; (2.1)

e*Av(z, y) — v(z, y) = 0. (2.2)

The following dimensionless quantities were introduced in (2.1)-(2.2) [1}: w(x, y) is the
deflection of the plate; v(x, y) is the resolvent function; w is the frequency of vibration;
k is a large parameter characterizing the bending stiffness of the plate; 9 is the corrected
thickness of the plate; € is a small parameter characterizing the shear stiffness of the
plate,

TE. k 2y g2kt B = Q__'E)__li__ 2 WG
o =w*aVp/E. Kt =12(1 —v})a*/h?, ﬁ_(zc' M T yp—— 1022 G (2.3)

where w* is the dimensionless frequency of vibration; a, b, and h are the lengths of the sides
and the thickness of the plate; p is density; v, G, and E are the Poisson's ratio, shear
modulus, and Young's modulus in the plane of isotropy.

In Egs. (2.3), k, 9, and € include the same powers of h/a. However, they must still be
distinguished from one another by virtue of their different physical meanings. Although it
would undoubtedly be interesting to find the asymptotic solutions for several small para-
meters, this problem is not examined here.

The dimensionless moments, forces, and other quantities are determined from the relations

1 * . a *

Mn—Eh Mn 117n5=ﬁfwns, Aln:EENn.
 — [ ah®  x H_ahz a*
VEgR U %= g % % =g s

Here, M% and Mig are the bending and turning moments; NX is the shearing force; v* is the re-
solvent function; an, us are the shears along a normal to the boundary and along the boundary
respectively. The quantities M, Mpg, Np, ¢n, 0g can be represented in terms of the sought
functions w and v:

» 7 2
My, = — (,% Myn + €2Byw + (— 1)12¢? 0‘; ;S) )
I

IWns Il‘l = (;‘;—12' _/‘/[ons -+ 32B2w + (h 1)1 (U — 282;:)) , (2 .[;)

Ty
fvs-.ll’[ = Oy II‘l = (_" ——No.s + (* 1)1 av) ’
iy}
/ [4]
Nalr, = asr, = ( = NM_(._. 1)} v) ,
where

d 7] 2 1—|—v Vv EG o
,«*_____*_V__. = -2 AR T .
A 3 3 032, B1 2“ v)AA ‘V (OA E'G(l ‘V)’
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TABLE 1

Boundary conditions of sys-

Boundary conditions of the trun-

No.| tem (2.1)-(2.2) cated problem (zeroth approxima- | B, ¥
tion)
9
t | w=0, M,=0, M, =0 Wy =0, Moy WF (w)=0% 0.0
2 | w=0, M, =0, a,=0 w, =0, My, =0 14
dw dw
3| w=0, My =0, —z-+x2,=01w =0 —~an° 0,0
oM,
+rF =0
dw aw, 1
41 w=0, a,=0, 5~—an*0 wO:O, —dn{—xkz Non =0 11
oM
5| Ny=0, M, =0, M, =0 Nop + 0 =0, My, + 0,0
+ K F(w)=0*
6N, =0, M, =0, a,=0 Nyp=0, My, =0 1,1
_ , dw M s ow
T N=0, M =0, — g fxa, =0 Ny o+ — 0, L= 0,0
dw . awo_
8| My=0, 0,=0, —z +xa =0| N =0, —2=0 1.4
* F(w)=(-1 [M()no rgnr‘g_‘_lfil )+ MORS [Fl Fl Iflz (S)l
B»—-252A+"1 2 9
27 % gnos v +vo an s’

while My, Mypss @and Ny, are the bending and turning moments and the shearing force corre-
sponding to the classical theory:

The boundary conditions for system (2.1)-(2.2) are shown in Table 1.

Mo = A*w, Mys=1—v

Non = ;ﬁ Aw + Fo®y (1 + v)%’,

) w
an ds’
dw

NOS: 53‘

6 1
T Aw + o’y (1 +v)

amine boundary condition 1, corresponding to hinged support of the edge.

obtain the following

It is evident that the e-th-order effect of
This means that the boundary layer

g, = 0.

We insert expansion (1.4) into Egs. (2
cordance with Part 1,

(1.8) (i = 0),

Here and below, M),

As an example, we will examine the function R,,.

(1.9),

condition at infinity (1.

(i) r{
M011157 A{ 017’27

on Iy

wirl = 0;

MO,L +&Bw + (—1)2e2 22

Mo 88,0 + (= 1) (v

we have the following

80y,
052

82/
’

v |
an(.?s

621;)1
3
on | Fl

= 0.

2e?

conditions (2.5b)-(2.5¢c) is equal to g, =
should eliminate the error in the last condition.

.1)-(2.2) and boundary conditions (2.5).
problem for the zeroth approximation: for Q,, —
6),

First let us ex-
Using (2.4), we

(2.5a)

(2.5b)
(Z2.5¢)
_]_’

In ac-

and the boundary condition on T,

—QJ *F%%—Moh

(2.6)

N corresponds to the i-th term of expansion (1.4).

The latter is determined from Eq.
condition at infinity (1.7), and the boundary conditions
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(280 _p ) _o, (2280 _p ) o (2.7)
agl 10 r, 20 1T 0 e 10 r, = 10'P2- :

1

In (2.6)-(2.7), B =0, y = 0. The function w, is found from Eq. (2.1) and the boundary
conditions. Thus, on Iy

1 (0 PR 0 62H4 (2.8
wylp, = 0, = M —2(_-_1 + o) —o. -8)
et P g%, om; 9E,0m, /1,
We now need to establish the specific form of the boundary layers Q,, and Q,,:
1
%@m=m@uw¢mmmb—?M&h (2.9)
Q20 (%, 1) = Pog () XD (— 1)), Ppo (@) = — ’;‘i‘“ M(()gc)y Ly
Inserting (2.9) into (2.7), we obtain the boundary conditions for R,
N R,
& a—gg“ — Ry, = Pyo (V) exp (— ny),
1 r
1 (2.10)

@R,
2 P — Ry} = pp(0)exp(—E,).
uH T,

It follows from (2.9) that there is a discontinuity at the corner point in boundary condi-
tions (2.10), i.e.,

P20(0) — p1o (0) = 5 W(xy ‘I‘ NT,-

The Green's function of problem (1.9), (1.7), (2.10) is constructed by the transform
method and has the form

GE, M, 7, 1) = (120) [K(r)) + Ko(ry) — Ko(rs) — Kory)], (2.11)
where K,(r) is a cylinder function of the imaginary argument:
ro =02 (0 — 9202, ry = (6 -2+ (n + 022,
rg = L& — )%+ (n + 212 ry = [(E -+ 1) + (n — D2IV2
Then the solution of problem (1.9), (1.7), (2.10) is represented as
B8, m) = pao(0)1(E, M) + P1o(0)5(E, M),

G (E, m, T, 1 G s M T, R
I, = f CEADD|  exp(—tar, I, :j CEATD | exp(—7)du.
T

1 2

(2.12)

The functions Ry, are constructed similarly in the neighborhood of the other corner
points. .Inserting R,, and R,, into boundary conditions (2.8) and taking into account Egs.
(2.9) and (2.12), we obtain boundary conditions for wy; on I';. Finally, the boundary condi-
tions for the zeroth approximation can be written in the form

(0) ,Pl o ( 1) 2 [M(()gl) |Plnr{+1fll (S) M(Ogl) ll‘lﬂrl_]jm (S)]; (2 . 138.)
wylr, =0, (2.13b)
L, (& ) o 1, M
flk—zl—b‘g_aiﬁh—h- (l:17 3)7 flh=p§1—%;:]—l“l)— (l=2,4)

In Eq. (2.13), we assumed that I'y =T, and I's = ;. As was proven in [6], the function
fox(s) has exponential values [6, 7]

()| << € exp (—8ny), lf12(n2)l << Cexp ("an) (2.14)
(0 ¢ 51, C and 8§ are arbitrary constants).

For w,, we obtain a generalized eigenfunction problem and the numbers (2.1), (2.13).
We will refer to this as the truncated problem (zeroth approximation) of the initial problem
(2.1)-(2.2) with the boundary conditions shown in Table 1. It follows from (2.14) that the
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right sides of (2.13) differ appreciably from zero only near the points of inflection. In
the simplified analysis of the truncated problem, the effect of the correction factors fy(s)
in the boundary conditions can be ignored. Let us assume that the solution of the truncated
problem has been found. We then establish the edge effects in expansion (1.4), thus com-
pleting the construction of the solution (zeroth approximation).

Let us now proceed to the construction of the subsequent approximations wy and v; of
problem (2.1)-(2.2) with the boundary conditions from Table 1 (i =1, 2, 3,...,n). Insert-
ing expansion (1.4) into the equation and the boundary conditions of the initial problem and
equating terms of the same order of smallness to zero, we obtain the following problem.

For Q;,, we have Eq. (1.8), boundary conditions (1.6), and

—le

1 i
5%2 011 ,F - ?‘ $M(()x)y -— BQLUi*g Irl. (2 . 15)

The angular boundary layer R,; is determined from Eq. (1.9}, boundary conditions (1.7),

and
PR, 5
228 Ryl = Qu — 220202 Qm .
% ' 1 (2.16)
PR 3*Q,
2 ; — 1_‘ 212 .
5ﬂi B IP ¢ oy r

3

The function wj is determined from Eq. (2.1) and the condition on the boundary. Thus,
on Iy

2 2
1 Mmoo "R, N I°Ry;
o o8 om, * 9Eom,

r = - Blwi_z -+ 2 [Q}i—l'Js_ Qgi_l -+ 04~;_1], w; %rl ={. (2. ].7}
-

Here and below, the expressions with negative indices are identically equal to zero.
We seek the solution of problem (1.8), (1.6), (2.16) in the form
Q. ¥) = Ipioly) + Buil&ys wlexp (—Ey), (2.18)

where the first term is the solution of homogeneous equation (1.8) with inhomogeneous bound-
ary conditions (2.16). The second term is the solution of inhomogeneous equation (1.8) with
homogeneous boundary conditions (2.16). Then

1 )
i = — |5 A’[ - Howi— ) 1
Py (k‘ on 2 2 v

o0 (2.19)
sh (1) gyi (v y)dv — fsh (Edexp(§, — 1) guls, y)do

¢

5y

ure
Pyt

Pri(€r ) =

CX S,

It is not hard to show [see (1.8)] that the discontinuity g.i{&, ¥) = @&, ¥ exp(—&)
(@Agh ) is a polynomial in £, with coefficients dependent on vy).

Thus, B1i(E1, ¥) is a bounded function in £;, and the following exponential estimate
holds for Q,j

Q151 1) << Cly) exp {(—6E).

With allowance for (2.16), (2.18), the angular boundary layer is determined from the
following conditions on the boundary. Thus, for R,j

BQRH
2—~ — Rulr, = [poi () 4 %o ()] exp (= M),
;;R | (2.20)
2 Hulr, = 1P (0) + s Gl exp (— B,
1

where

®(5) = B O + Bricalis 0) F pricel0) lyys
%9:(N) = Pail0, my) + mu‘—g(ov M)+ Paio2(0) s
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Here, as for the zeroth approximation, the boundary conditions are discontinuous at the
corner point. The magnitude of the first-order discontinuity is determined from (2.15) and
the analogous condition for Qg;. Restrictions on the function py;(s) and, thus, on wj follow
from (2.20): the functions pg;(s) are bounded derivatives Pei,ss(8)|g=¢to at i =0, 1, 2,..
n— 2.

4

( The solution of problem (1.9), (1.7), (2.20) is found from formulas similar to Egs.
2.12):

Ry(E, m) = poi(O)4(E, M) + pu(O)a(8, M) + Toul& M) + TG, M),
Ty j GE T | sy (1) exp(— by,

at =0

PI
G , T, #
T, = jl —&;—Tn—)- Lzoxli (1) exp (— 1) dr.
F2
Expressions for Iy (£, n) are contained in (2.12).

As a result, we obtain the boundary conditions for the truncated problem (the i-th ap-
proximation):

wi|rl=0§ (2.213)
1 i i i
-z MG ’r, +(—1)2[ M, lrlnrlﬂfu (s) + M5, Irlnrl_lfzz )] =
= Bowi_g + 2Qyi—1 + gui (8) + guai (),

gmi (8) = (6_2TH & 'flh))

GE, om, (=1,3), (2.21b)

T (o M)\
i (8) = (_5_%;7’:11_—1)}1*1 (= 2,4).

The functions ggpi(s) have exponential estimates of the type (2.14) and differ significantly
from zero only in the neighborhood of the corner points.

Knowing the solution of the truncated problem (i-th approximation), we reconstruct the
boundary effects. The truncated problem (i-th approximation) is found on a spectrum and
should thus satisfy certain solvability conditions (which are not presented here).

As can be seen from Table 1, the boundary conditions are divided into two groups: 1, 3,
5, 7, and 2, 4, 6, 8. The solution of the initial problem with boundary conditions of the
first group is constructed in a manner analogous to problem (2.1)-(2.2), with boundary con-
ditions from Table 1. It is easily seen that formulas (2.6)-(2.7), (2.9)-(2.14) are valid
for the boundary-layer part of the asymptote for the zeroth approximation, while formulas
(2.15)-(2.16), (2.18)-(2.21) are valid for subsequent approximations. The boundary condi-
tions of the truncated problem are found by the elimination method (see Part 1). We will
take a closer look at the case of edge 5, free of constraints. The first boundary condition
of the truncated problem will coincide with (2.13a) (i = 0) and (2.21b) (i =1, 2,...,n),
while the second boundary condition on I'; will have the form

N e, = — kz-:—y [Qui + Qai + Qui + Ry + Rylr,.

Inserting Qg4 and Rgj into this expression, we find for the zeroth approximation w, that

i 51 6 1 1 al (0,
Nilp, = — k2 [73; P10 ¥) — — Pao (0) exp (— 1) + — P20 (0) —la(q:—lz +
S48l (0,1 1 ¢ ar, (0, m ar, (o,
+i 3 P O '_2"55}]”'-12 — % P (0)exp (—n,) + = Pao ) “‘LH -+ "‘:;—pm(o) —2_(5_71‘22]
1 2 LOT

By direct differentiation, we find from (2.11) that

d {0G(E, m, T, ¢t .
T

9 [aa (, 1,1, 1t) =
an E=0

aq at rzo]g—:o

where 8§(n — t) is the Dirac delta function. It then follows from (2.12) that

584



81,10, ) ar, (0, m)

,
7 = exp(— ), m = 0. {2.22)

With allowance for Eqs. (2.22), (2.9) and the corresponding expressions for the other
sides of the plate, we finally write the boundary condition for the zeroth approximation:

N e, = — 12 (— 1 pro () Iy = — 5o M|, (2.23)

Boundary condition (2.23) corresponds to a generalized Kirchhoff force.

We similarly obtain the boundary conditions of the truncated problem (i-th approxima-
tion): the first coincides with (2.12b), while the second has the form

N+ 2 M@l = — 5-Buly ~~2(&W(0 0 — %o (M) exp(—1) (g =2, py = 4).

Thus, we obtain the Kirchhoff transform in the neighborhood of a corner point, i.e., for a
piecewise-smooth contour.

Let us proceed to boundary conditions 2, 4, 6, 8 (see Table 1). As an example, we will
examine conditions 2. The latter correspond to hinged support of an edge with a rigid dia-
phragm preventing shear of the sandwich:

Wy h‘l = 0,

, (2.24a)
4 2 s _ i\ 9p2 00 _ 0
7 Mon + &*Bywe + (— 1) 2¢* | = 0; (2.24b)
Ay qply
x> Nos —{ 1)5” T; 0. (2.24c)
Here, the e-th-order effect of boundary conditions (2.24b)-(2.24c) is equal to q, = —1,

q; = 1. . In accordance with Part 1, the boundary layer is determined from (2.24c). Thus,
for Q,; we have the boundary conditions

(?Qli

ef—1
051

. 1 y@
== N
The angular boundary layer R,; is determined from Eq. {1.9) and the boundary conditions

5R”
d
JE,

aR..
\ g")‘-‘li
ry dnl r

90,

o dz
o

90y

Y1
[ 3y

Ty
where B = 1, vy = 1.

The ordinary boundary layer contains the multiplier €, while the angular boundary layer con-
tains e€2. Then we find the functions wy from Eq. (2.1) and the boundary conditions

0 {B e (| P TR, } , 2.25
wilr, on Wiy — (= 1) {a(rz,/e)dfL dEan |ir, ( )

The right part for the zeroth and first approximations in (2.25) is identically equal to zero.
Formulas of the type (2.18) are valid for Q;i. We have the following relations for these
formulas

v
Pri(g) = — 3 Nl Ir,.

Bui (E, y) = — | ch(v) gy (v, y) dv — {ch (82) g2 (7, ) exp (&, — 1) dr.

D ey K44

The following formula is valid for angular boundary layer R,y

R ) —~§G (s My To 1) bomo [P21, 0 (0) - Pasx (0, Dl exp(— ) dt —

1

[ 68 % 0o [p10,t 0) + Buie (3, ) exp (— 1)
I

2

G, € m t)* = Ko {r) + Ky (ry) + Ko (rg) + Ko (rh)-
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As regards boundary conditions 4, 6, and 8 from Table 1, the procedure for obtaining
the boundary conditions of the truncated problem is similar to the procedure used above.
Table 1 shows the boundary conditions for the zeroth approximation — which, except for condi-
tions 1 and 5, correspond to the boundary conditions in the classical formulation. It should
be pointed out that boundary conditions 3 and 4 include the following additional terms

1 oM,,, . w [ a
n (Mom + 200m), W), e (22,

these terms being small, since k*>» 1. They describe the effect of shear of the entire sand-
wich through its thickness. It should also be noted that the Kirchhoff transform does not
always exist for a free edge. For example, while the former does exist for edge 5 — which

is free of constraints — it does not for the free edge with the diaphragm preventing shear of
the sandwich. In the second case, it is necessary to assign the shearing force in the classi-
cal formulation in place of the generalized Kirchhoff force.

Boundary conditions 1 and 5 contain additional terms of the form
Mons Ir;nry 41 fin (), 1 fin(s) | << Cexp(— s).

Their appearance is related only to the presence of the points of inflection, because they
would not be present in the boundary conditions of the truncated problem if the boundary
were smooth [3-5, 10, 111. This result can be explained as follows from a mechanical view-
point. The turning moment M, ¢ on the side I'y in the neighborhood of the corner points is
experienced as a bending moment on the adjacent sides TI'gy, and TIy-,. Also, the function
fok(s) characterizes the depth of penetration of this additional bending moment in the neigh-
borhood of the corner points on the adjacent sides Tg4, and Ty-,.

3. Let us now examine the problem of the free vibration of a three-layer plate [2]
(1 — Fu2A)AAX(z, ¥) — 01 — u2A)X(z, y) = 0; (3.1)
e Av(z, y) — v(z, y) =0 (3.2)

(X is the resolvent function; v is a function characterizing the shear of the three-layer
sandwich). Here, we introduce the notation

o =o*a V/E, k=12(1 —v?)a¥hiy,,

21—V 2 N
e=g g W=

The small parameters ¢ and p are of the same order but have different meanings in a mechanical
context: the field of the angles of rotation consists of a potential part (corresponding to

u) and a curl part (corresponding to e). Thus, these quantities must be distinguished from
each other.

The following parameters enter into Egs. (3.3): w* is the dimensional frequency of
vibration; a, b, and h are the lengths of the sides and the corrected thickness of the plate;
E and v are the corrected Young's modulus and Poisson's ratio [2]. The small parameter $
characterizes the natural bending stiffness of the load-bearing layers, while the large
parameter k characterizes the bending stiffness of the entire three-layer sandwich. Also,

N, is the mutual location of the layers, B, is the capacity of the plate to resist a trans-
verse load, and Y, is a parameter equal to the ratio of the transverse force experienced
by the filler to the total transverse force.

Although the ratio h/a is of the same degree in each of the parameters k, £, and y,
each case is different because the ratio has different physical meanings. We will examine
the asymptote only for e.

We introduce the dimensionless moments, generalized moments, forces, and other quanti-
ties:

1 * 1 * a %

Mn = Eh Mm A[ns = Eh A'[ns» ]Vn = E.‘;?Nm
1 * 1 ) *
H":-ETH"’ Hns:HH:w Qp = Opy s == Qs,

where M, and M,g are the bending and turning moments; H, and H,gq are the generalized bending
and turning moments; N, is the shearing force; o, and ag are the normal and tangent angles
of shear. These quantities are expressed as follows:
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TABLE 2

Boundary conditions of system |Boundary conditions of Eq. (3.1)
No. | (3.1)-(3.2) (zeroth approximation)
| |w=0, M, =0, H,=0, H, =0 wo:O, H, + F (wg) = 0%,
Myp+ (1 —8) F () =0
2 w =0, M,nZO, Hﬂ::O, an=0 w0=0, Monzov Hon:O
fw dw
3 lw=0, —6—'[:0’ as:()w H,ns=0 U)O:‘-O, 7'—':: . —AXO+
é
+ 55 Hons =0
dw dw 8
4 u:(), -—6;:0' dnz(), as=0 w0=0, .b..n—: y %;AXOZ
T P
5 | Ny=0, M,=0, I, =0, Hy =0 Ny, + (1 —8) 5= H, =0,
Mg, + (1 — 8) F (w )= 0%,
Hyp + F (1) = 0**
6|V, =0, M, =0, H,=0, a,=0 N, =0 MM:Q Hy, =0
ow . Jw . . ]
T =0 e =0 Ny =0, Hy =0 0= 0, N (1= 8) L Hyp =0,
_.a_AX I_?...H —0**
an o U gs Tens T
Jw Jw F}
Erand— = / = = 0 — N = o =
8| G =0 ag=0, Ny=0, a,=0| -0=0, Ny=0, -2 AX =0

* F(wy) = (— pa—v)2 [Hons lFlﬂFl+1

fry (s} + Hyps Irl ATy_y fia (S)]~

1 . . 9?
My == Mo+ (= 000 = =05 |
{ (i —v (1 —0 v
Maslr, = _;‘?[MO"S_(‘ ) g (zan _?ﬂr;
wly ! 8%
Haley = =Y [ o+ (= 0 (0 =) o]
" 1—vy [, 8%
s [ ar LU —v)(1—8) 1 av
Nalry = = B [Mon + (- 1)} Lm0 0_4,
) 1—9 2 J 11 v
O 1, = — T[T——’a‘; AX — (— 1) ?%L,’
1— & 11 ép
%slr, = ——V*—'L—-_—;dn AX —(— 1) = } .

=1 =) X, Mon = A*w, Mops = (1 —

Hoyn = A*X, Hpps=(1—

The boundary conditions
boundary conditions in v for

V) 3w

an ds’
8 X - a

V) Gnds A/On = ‘a?Aw

for system (3.1)-(3.2) are shown in Table 2.
the three-layer and transversely isotropic plates are of the

B v

2,0

3.1

2,0

3.4

2,0

3.1

2,0

3,1

The fact that the

same type allows us to apply the results in Parts 1 and Z to the case of three-layer plates

without restrictions. Table

2 also shows the boundary conditions of the truncated problem.

It was proven that the Kirchhoff transform (generalized shearing force) exists in the

neighborhood of a corner point. The notation

Aleate
KK

in conditions 5 and 7 indicates that {1 —

9)H,,g should be replaced by M;,g in the Kirchhoff transform, since M;,g is the moment of
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the more general order. This substitution is made necessary by the fact that the asymptotic
calculations are more rigorous than the initial hypotheses. The latter are based on the
Grigolyuk —Chulkov theory of three-layer plates: the bearing layers are described by the
Kirchhoff -Love theory, while the filler is described by a theory which allows for shear.
Thus, the moment H,g (describing the turning moment in the filler) needs to be replaced by
M,s (the turning moment for the entire plate).

The refined theories of Ambartsumyan for anisotropic plates and Grigolyuk and Chulkov
for three-layer plates are of the same order of accuracy. Thus, the appearance of the addi-
tional terms in boundary conditions 1 and 5 in Table 2

(Mons|rinrysy ) fin(8) | fin ()| << Cexp (— 8s)

has the same physical explanation as for the transversely isotropic plate. The presence

of these terms is connected mainly with the accuracy of the hypotheses serving as the basis
of the theory of bending for both transversely isotropic and three-layer plates. Only the
use of more accurate hypotheses could yield a definitive answer to questions regarding the
behavior of the solution in the neighborhood of corner points in the case when the bending
and turning moments on the boundary are assigned.
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